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Our Focus is on Heterogeneous Wireless  
Mobile Ad-Hoc Networks (MANET’s) 
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• Mobile Users ! UGV’s, Vehicles, Ground Troops, etc. 
• Delay Tolerant Networks (DTN’s) 
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The Operational Setting Has a UAV Relay and 
Clusters of UGV Nodes 
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We Focus on Delay Tolerant  
Networks (DTN’s) 

"  A UGV network operates as an intermediately 

connected mobile ad hoc network, otherwise known 

as a Delay Tolerant Network (DTN) 

"  A UGV-DTN is dynamic 

"  Path planning protocol must react to individual UGV 

movements (mobility) 

"  Knowledge of UGV mobility requires estimating UGV 

dynamic position, velocity and acceleration 
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Path Planning and Routing Require 
Mobility Estimation 

"  Mobility Estimation: 

 We must develop set of mobility algorithms that will 

 achieve realistic estimates of the individual UGV nodes 

 within the DTN 

"  Path Planning 

 We must develop a path planning strategy using the 

 mobility estimation results as inputs to achieve 

 cooperation among individual UGV nodes for routing 
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Problem Statement 

The purpose of this work is to create a foundational 
algorithm for mobility estimation that can be coupled 

with a cooperative communication algorithm to provide 
a basis for real time cooperative planning in UGV-DTN’s 



Brief Literature Review 

Grace Clark 
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Mobility Modeling and Estimation Algorithm 
Design Involves Several Key Considerations 

Grace Clark Consulting 

Purpose in UGV-DTN 
"  Produce estimates of position over time, and sometimes velocity and 

acceleration over time 

Key Attributes 
1)  The operational mission setting and physical constraints 

2)  The set of available sensor measurements or observations 

3)  An appropriate physics model 

4)  An appropriate performance index or set of performance indices 

5)  An appropriate estimation/tracking algorithm or set of algorithms 
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The Operational Mission Setting is Key to the 
Technical Approach 

"  Constrained Grid Of Spatial Cells  

  - Movement within predefined grid with landmarks  

  (such as college campus) 

 - Wireless access point for movement measurement, storage  

              and mobility estimation 

 - Not adequate for our operational mission(s) 

"  Ad Hoc General Spatial Grid  

–   Operate wherever one is deployed, undefined or general  

   spatial grid 

–   RSSI signals from known base stations 

–    Appropriate for our operational missions 
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Approaches Taken in Previous Networking 
Literature 

"  Authors Propose a New Mobility Estimation Algorithm 

"  Based on constrained spatial grid of cells and Markov-class 

models (Hidden Markov Models, etc.) and  

"  Coupled with a standard routing protocol such as Ad Hoc On 

Demand Distance Vector (AODV) or Dynamic Source 

Routing (DSR), both on NS2 software 

"  Authors Propose a New Routing Protocol 

"  Coupled with standard mobility estimation model like random 

walk and random waypoint, also in NS2 software 



A Stochastic Mobility Model  
 in the General Spatial Grid 

Setting 

Grace Clark 
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We Use a General 2D Spatial Grid Setting, Model-Based 
Signal Processing and a New Routing Protocol  

"  Algorithms for both mobility estimation and the routing protocol that are 

 new to the networking literature 

"  Our mobility estimation approach uses: 

"  A general two-dimensional spatial grid setting 

"  A dynamic Gauss-Markov state space mobility model 

"  A first-order semi-Markov model for the command (input) function 

"  Received signal strength indicator (RSSI) signals for the 

 measurements 

"  The use of model-based signal processing and control techniques for 

 mobility estimation in an ad hoc network is new to the networking 

 literature 
 



16 

We Use a 2D General Spatial Grid Setting: 
Preview Shown Below 

Note the Three Base Stations (Transmitters) 



UAV and UGV Information Flow 
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A Linear Discrete-Time Gauss-Markov  
Model is Used for the States of the Node 

Linear Gauss-Markov Model for State of the Mobile Node 

"                                 denotes the state of the mobile node at time step k 

"                     denotes a realistic motion discrete-time command process   

"                      denotes a process noise, where  

"  Gauss-Markov state space model modified to include a discrete semi-

Markov type model (See next slide(s)) 

"  The Jacobian matrix of the measurement vector is derived for use in the 

Kalman Filter (See subsequent slide) 

( ) ( ) ( )1,k k u k w kx A T x B T u B T wα −= + +

xk = xk , !xk , !!xk , yk , !yk , !!yk!" #$
T

[ ], ,,
T

k x k y ku u u=

[ ], ,,
T

k x k y kw w w= 2~ [0, ]k ww N R

T = The temporal sampling period in seconds
α = Reciprocal of the random acceleration time constant
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A (6 x1) Discrete-Time Gauss-Markov State  
Space Model is Used for the States 
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A (2 x 1) Discrete Semi-Markov Model is 
 Used for the Command Input Signal 

Aspects to Consider 
• Realistic motion includes both continuous and discontinuous motion 

• A mobile node is likely to change acceleration unexpectedly (i.e., turns) 

• Acceleration is likely to be correlated over time, due to momentum 

rk+1 = −αrk +wk

ak = uk + rk

rk+1 = −αrk +wk .

Rrr (τ ) = E{r(t)r
T
(t +τ )}=σ m

2e−α τ I , α ≥ 0 The conditional probability densities of ak  
 given the states 1 2, ,..., mS S S  are depicted  
for the 1-D (scalar) case 
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The Jacobian Matrix of the Measurement  
Vector is Derived for Use in the EKF 

H !
∂h xk"# $%
∂xk

x
k
= x̂

k |k−1

=

−10η xk ,1 − a1( )
ln 10( ) xk ,1 − a1( )

2

+ xk ,4 − b1( )
2"

#'
$
%(

0 0
−10η xk ,4 − b1( )

ln 10( ) xk ,1 − a1( )
2

+ xk ,4 − b1( )
2"

#'
$
%(

0 0

−10η xk ,1 − a2( )
ln 10( ) xk ,1 − a2( )

2

+ xk ,4 − b2( )
2"

#'
$
%(

0 0
−10η xk ,4 − b2( )

ln 10( ) xk ,1 − a2( )
2

+ xk ,4 − b2( )
2"

#'
$
%(

0 0

−10η xk ,1 − a3( )
ln 10( ) xk ,1 − a3( )

2

+ xk ,4 − b3( )
2"

#'
$
%(

0 0
−10η xk ,4 − b3( )

ln 10( ) xk ,1 − a3( )
2

+ xk ,4 − b3( )
2"

#'
$
%(

0 0

)

*

+
+
+
+
+
+
+
+
+
+
+

,

-

.

.

.

.

.

.

.

.

.

.

.



22 

The (3 x1) Measurement Vector  
is Highly Nonlinear 

"  Use RSSI signals from at least three           base stations 

"  Known base station location is              at discrete time                     

"     denotes the RSSI measurement vector (3 x 1) 

"  RSSI signal modeled as sum of two terms: 

"  Path loss                                               where  

"  Rician/Rayleigh Shadow fading 

"  Shadowing can considerably degrade estimation process, but  

 prefiltering can be used to reduce observation noise [Zaidi et Al.] 

( )BSM

( ), ,,i k i ka b

i =1,…,MBS( )

[ ] [ ]( )0, 10 , ,10 logk k k i k i k k iz h x z d xν η ν= + = − +

kz

[ ] [ ]( )0, 10 ,10 logk i k i kh x z d xη= − [ ] ( ) ( )
1/ 22 2

, , ,k i k k i k k i kd x x a y b= − + −⎡ ⎤⎣ ⎦

2

, ~ 0,k i vv N σ⎡ ⎤⎣ ⎦

k = 0,1,2,…



The Extended Kalman Filter for 
Mobility Estimation 

Grace Clark 
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Our Dynamic Model is Linear  
and the Noises are Gaussian 

•  Models based upon difference equations of the dynamics!
!- In state space form or rational polynomial forms!

!
• Model-Based Mobility Estimation algorithms !

!- If Linear and Gaussian ! Kalman Filter!
!- If Nonlinear and Gaussian ! Extended Kalman Filter!
! ! ! ! !or Unscented Kalman Filter!
!- If Nonlinear and/or Non-Gaussian!
! ! !! Sequential Monte Carlo estimator!
! ! ! !(Particle Filter) 
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The Extended Kalman Filter Uses the State-
Space Model and RSSI Measurements 
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EKF Block Diagram 



Estimation Performance 
Measures 

Grace Clark 
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We Define Performance Indices to Evaluate 
Estimation Performance and Tune the EKF 

Zero-Mean Test on the Innovations 
"  Innovations must be zero mean and white for EKF to be optimal 

"  the Expected Value of the innovations vector and its “two sigma bounds.”  If 

95% of mean values lie within the bounds, the innovations are declared 

zero mean. 

Innovations Whiteness Test 
"  The innovations “whiteness” indicates how well the EKF is tuned 

"  The autocorrelation function of a white stochastic process is a Kronecker 

delta function.  We compute “two sigma bounds” on the autocorrelation and 

test the values at nonzero lags.  If 95% of the samples  lie beneath the 

bounds, then the Innovations are declared white 

e(t) = z(t)− ẑ(t | t −1)
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We Define Performance Indices to Evaluate 
Estimation Performance and Tune the EKF 

Root Mean Squared State Estimation Error 
"  The state estimation error is given by: 

#  We calculate the state estimation error vector and its “two sigma 
bounds.”  If 95% of values lie within the bounds, the innovations are 
declared zero mean. 

!xk ! xk − x̂k|k−1

σ x̂ ! var !xk( )

E !xk
T !xk

!
"

#
$=MSE !xk( )
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We Define Performance Indices to Evaluate 
Estimation Performance and Tune the EKF 

Weighted Sum Squared Residual (WSSR) 
"  Multiple innovations whiteness testing (aggregates innovations into a  

  scalar performance measure)  

 If 95% of the WSSR values lie beneath the threshold, then we declare 

 the EKF tuned. 

 

     WSSR for ( p×1) Vector Innovations 
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Example: How to Compute the Scalar WSSR  
for a Scalar Innovations Sequence 

V (n) = 1
W

e( j)− e ( j)[ ]2

j=n−W+1

n

∑ ,      for n ≥W

e (n) = 1
W

e( j)
j=n−W+1

n

∑  ,                   for n ≥W
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The PCRLB Gives a Lower Bound on the 
Achievable State Estimation Error Variance 

Pk|k = Ek ,x x̂k|k − xk( ) x̂k|k − xk( )
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Posterior Cramer-Rao Lower Bound (PCRLB) 
"  Lower bound on achievable variance in the estimation of a parameter 

gives a reference point from which to evaluate estimator uncertainty 

"  The covariance matrix of the state estimate error is: 

"  The Fisher Information Matrix using likelihoods lambda 

"  The PCRLB for this problem is 

PCRLB = Pk|k 1,1( )+ Pk|k (4,4).

λ xk( ) = ln p x* | xk( )



Simulation Experiment and 
Performance Measurement 

Grace Clark 
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Initial State and State Covariance 
Estimates 

Parameter Values 

Initial state covariance 
estimate  

Initial state estimate  
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Simulation Experiment Setup 

Simulate the Command Input 
"  Generated manually; assumed to have zero process noise (deterministic) 

"  Short-time maneuvers are followed by uniform motion 

"  Discrete acceleration levels  

 

Simulate the Uncertainties 
"  White noise sequences mimic the changing UGV-DTN node (zero mean, 

white Gaussian process noise and the noisy signal measurement (zero 

mean, white Gaussian  

( ) ( ){ ( ) ( ) ( )}0.0,0.0 , 3.5,0.0 , 0.0,3.5 , 0.0, 3.5 , 3.5,0.0M = − −
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The (2 x 1) Acceleration Vector is Designed to Create a 
Trajectory Having two Turns, the 2nd one Very Sharp 

Xdot_x(t) 

Xdot_y(t) 
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Measurement Noise Vector  v(k 
(For 3 Base Stations) 

vk → N[0,8I ]
±2σ v = ±8
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Noisy RSSI Measurement Signals:   
Distances from the 3 Base Stations 
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The Estimated Trajectory Tracks the Actual  
Trajectory Nicely, Even Through a Tight Turn 
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Top: Actual and Estimated RMS Speed (x and y combined) 
Bottom:  Actual and Predicted Speeds xdot and ydot 



41 

State Error Vector Xtilda(k) = x(k) – xhat(k|k)  
and its “Two Sigma Error Bounds” vs. Time 
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Innovations Vector e(t) and “2 Sigma Error Bounds” 
e(k) = z(k) – zhat(k|k-1) 
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E1(t)) 

Statistical Whiteness Test on the Innovations  
e(k) = z(k) – zhat(k|k-1) 

e1(t) e2(t) 

e3(t) 
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Position Error and Speed Error vs. Time 
(x and y Components are Combined)  
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Red: Position RMS (x and y combined) 
Blue: PCRLB  on the Position RMS 

Computed by Ensemble Averaging  
Over 100 Realizations of the Stochastic Processes 
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Computed by Ensemble Averaging  
Over 100 Realizations of the Stochastic Processes 

Red: Speed RMS (x and y combined) 
Blue: PCRLB  on the Speed RMS 



47 

WSSR (Weighted Sum Squared Residuals) Are Well  
Below the Threshold (Red), So the EKF is Well Tuned 

The WSSR Threshold is the Red Line 



Conclusions and Future Work 

Conclusions 
"  The algorithm is shown to implement efficient mobility tracking of UGV nodes 

in a wireless network 

"  Demonstrated that the mobility estimator performs effectively and can be  

integrated into a new cooperative routing protocol with enhanced 

performance 

Future Work 
"  Combination with a new routing algorithm 

"  Utilization of GPS-Enabled anchor nodes 

"  Estimation using a Rao-Blackwellized particle filter  

"  Estimation using actual UGV-DTN node mobility data  



Contingency VG’s 
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Simulation Experiment Results 
"  EKF highly sensitive to choice of initial conditions on the state vector and state 

vector covariance 

"  Prior knowledge allows better choices for initial conditions 

"  Closer the initial state vector and covariance matrix are to the true state vector 

and state covariance matrix, the more rapidly the EKF will converge to proper 

solution 

"  EKF initial conditions determine the reaction of the UGV-DTN node in order to 

converge to the desired state 

"  The more confidence you have in your initial conditions, implying low 

uncertainty or initial covariance levels, the slower the UGV-DTN initially reacts 

to changes in the desired states 

"  The node behavior normalizes over time, implying that the filter eventually 

converges to the desired solution in finite time 

"  ICs will likely prove a useful parameter to tailor the initial behavior to suit 

proposed UGV-DTN routing algorithms 
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Simulation Experiment 

We Simulate to Demonstrate and Validate the Algorithm 
"  Simulate single node traveling along a trajectory that includes abrupt 

maneuver with process noise assumed to be zero (deterministic track) 

"  Gauss-Markov state space model with semi-Markov chain for node 

dynamics 

"  Constant power RSSI signal transmitted from three fixed position base 

stations 

Simulation and EKF Initial Parameters 
1)  Simulation parameters follow from Ristic et al. for basis of evaluation 

2)  Initial state and state covariance estimates for the EKF 



Measurements from One UGV  
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RSSI =  Received Signal Strength Indicator
          ⇒  Power of the Signal Received at the Antenna



Measurements from the UAV 

UAV 
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Outputs from the Routing Algorithms 

Routing 
Algorithms 
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Our Focus is on the  
Mobility Prediction Algorithms 

Mobility 
Prediction 
Algorithms 
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UAV and UGV Information Flow 
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Operational Needs Drive Our Work 

•  Integrate communications networking 
and information sharing into tactical 
military operations 

•  Mobile Ad Hoc Networks (MANET) 
– Require rapidly deployable networks, adapting 

to new environments 
– Mobile infrastructures, relying on wireless and 

self-organizing units 
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Issues in Survivable  MANET’s 

• Routing: Maintaining, Improving 
Communication Connectivity 

 - Node/link failure mitigation -> survivability 
 - Distributed Mobile Communications 
 

• Resource Management and Distribution 
 - Capacity and bandwidth allocation 
 

• Quality of Service provisioning 
 - Maintain reliability of services in different network 

conditions 
58 



Our Focus:  Resource Allocation & Routing 

• We Need To Control And Route Resources: 
–  Bandwidth 
–  Channel Capacity 
–  Channel Assignments 
–  Scheduling:  e.g. When users can transmit 
–  Power allocation for each user 
–  Etc. 

 
• This Requires Mobility Prediction: 

 $  Estimating and predicting: 
  - User  locations over time (trajectories)  
  - Likely wireless access points (AP’s) to which user will connect 
  - Resource usage over time 
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Process Noise Vector w(t) 



The General Single Input Single (SISO) System Model���
Lennart Ljung, Linkoping, Sweden	
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General SISO System Model :
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My Focus: Mobility Modeling and Prediction 

•  We need Signal Processing and Control 
•  Models are probabilistic and dynamic:   e.g. Hidden Markov 

Mo(e.g. Hidden Markov Models) 
 
 
•  Three Key Problems We Need to Solve: 

 (1)  Given:     Observed movement sequence “O” over time, 
  Estimate:   Probability that “O” was generated by model 

 
 (2)  Given:      Observed movement sequence “O” over time, 
  Estimate:  Locate the hidden parameters in the Model (HMM) 
       - Locate a user or most likely user Access Point (AP) 

 
 (3)  Given:       Observed movement sequence “O” over time, 
  Estimate:  Train the model (HMM) ! Estimate Model   

                     Parameters 
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